\qquad
Sign the following agreement and hand this page in with the rest of your exam.
I, (print your name) , have completed this exam without the assistance or advice of any other person. I also did not assist any other student in this class with their own exam. I take academic integrity seriously and I know that if I violate this agreement I will receive an F in this course. I agree to this agreement for all take home tests that will be given.
(sign here) \qquad .
\qquad
1-10 5 points per problem.

1. Write the matrix in reduced row-echelon form. Show all your work:
$\left[\begin{array}{ccc}1 & -1 & 5 \\ 6 & 2 & 3 \\ 5 & 3 & -3\end{array}\right]$
2. Write the augmented matrix for the system of equations and solve the system. Show all your work.

$$
\left\{\begin{array}{c}
4 x+3 y-2 z=14 \\
-x-y+2 z=-5 \\
3 x+y-4 z=8
\end{array}\right.
$$

3. $A=\left[\begin{array}{cc}6 & 5 \\ -5 & -5\end{array}\right], B=\left[\begin{array}{cc}5 & 0 \\ -5 & -1\end{array}\right]$

Find A - B
4. $A=\left[\begin{array}{cc}6 & 5 \\ -5 & -5\end{array}\right], B=\left[\begin{array}{cc}5 & 0 \\ -5 & -1\end{array}\right]$
a. Find 3 A
\qquad
5. $A=\left[\begin{array}{cc}6 & 5 \\ -5 & -5\end{array}\right], B=\left[\begin{array}{cc}5 & 0 \\ -5 & -1\end{array}\right]$
b. Find $3 \mathrm{~A}-2 \mathrm{~B}$
6. $A=\left[\begin{array}{cc}6 & 5 \\ -5 & -5\end{array}\right], B=\left[\begin{array}{cc}5 & 0 \\ -5 & -1\end{array}\right]$

Find AB

7. Find the inverse of the matrix (if it exists). Show all your work.

$$
\left[\begin{array}{cc}
-4 & 3 \\
5 & -2
\end{array}\right]
$$

8. Use the result of problem 7 to solve the system. Show all your work.

$$
\left\{\begin{array}{l}
-4 x+3 y=6 \\
5 x-2 v=24
\end{array}\right.
$$

\qquad
9. Find the determinant of the matrix.
$\left[\begin{array}{ccc}6 & -7 & 2 \\ 3 & -2 & 0 \\ 1 & 5 & 1\end{array}\right]$
10. Use Cramer's Rule to solve (if possible) the system of equations. Show all your work.

$$
\left\{\begin{array}{c}
6 x-y+2 z=-4 \\
-2 x+3 y-z=10 \\
4 x-4 y+z=-18
\end{array}\right.
$$

11-20 DO ANY 5 OF THE FOLLOWING PROBLEMS.

11. Write the un-coded 1×3 matrices for the message word: muskie. Then encode the message using the encoding matrix $\mathrm{A}:\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3\end{array}\right]$
\qquad
12. One hundred liters of a 50% solution is obtained by mixing a 60% solution with a 20% solution. How many liters of each solution must be used to obtain the desired mixture?
13. A tire corporation has three factories, each of which manufactures two models of tires. The production levels are represented by $A=\left[\begin{array}{ccc}80 & 120 & 140 \\ 40 & 100 & 80\end{array}\right]$. Find the production levels when production is decreased by 5%.
14. An electronics manufacturing company produces three different models of headphones that are shipped to two warehouses. The shipment levels are represented by $\mathrm{A}=\left[\begin{array}{ll}8200 & 7400 \\ 6500 & 9800 \\ 5400 & 4800\end{array}\right]$. The prices per unit are represented by the matrix $\mathrm{B}=\left[\begin{array}{lll}\$ 79.99 & \$ 109.95 & \$ 189.99\end{array}\right]$. Compute BA and interpret the results.
\qquad
15. The pay-as-you-go cell charges (in dollars per minute) of two cellular telephone companies for calls inside the coverage area, regional roaming calls, and calls outside the coverage area are represented by $\mathrm{C}=\left[\begin{array}{cc}0.07 & 0.095 \\ 0.10 & 0.08 \\ 0.28 & 0.25\end{array}\right]$. Column 1 is company A and column 2 is company B. Rows 1,2 , and 3 correspond to Inside, Regional Roaming, and Outside coverage area charges. The number of minutes you plan to use in the coverage areas per month are represented by the matrix $\mathrm{T}=$ $\left[\begin{array}{lll}120 & 80 & 20\end{array}\right]$. Compute TC and interpret the result.
16. Find the area of a triangle with vertices at the ordered pairs: $(-5,0)(4,4)(3,2)$
17. Find the area of the triangle with vertices $(-2,3)(0,5)(1,-4)$.
\qquad
18. Use a determinant to help you find the equation of the line through the points $(2,5)$ and $(6,-1)$.
19. The encoding matrix for a message is $\mathrm{A}=\left[\begin{array}{ccc}-5 & 4 & -3 \\ 10 & -7 & 6 \\ 8 & -6 & 5\end{array}\right]$. The encoded cryptogram message is $20-6 \quad 13 \quad 147-102 \quad 89$. Find the inverse of A and decode the message.
20. Write the uncoded 1×3 row matrices for the phrase COLLEGE ALGEBRA. Then encode the message using the encoding matrix $\mathrm{A}=\left[\begin{array}{ccc}-5 & 4 & -3 \\ 10 & -7 & 6 \\ 8 & -6 & 5\end{array}\right]$
